edexcel 쁯

Mark Scheme (Results)
Summer 2015

Pearson Edexcel International GCSE in Chemistry (4CH0) Paper 1CR

Pearson Edexcel International in Science Double Award (4SC0) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UG041121
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	Diagram shows four circles well-spaced apart	accept minimum of 3 complete circles ignore size and shape of circles ignore arrows and other symbols implying movement ignore a pattern reject any touching circles reject circles joined by bonds no penalty for half-circles at edges of square	1
(b)	move freely/randomly	Accept fast OWTTE ignore references to vibrate	1
(c)	M1 - (average kinetic) energy of the particles increases M2 - more particles have enough energy to escape / particles can escape more easily OR more particles overcome the forces (of attraction) holding them together (in the liquid) OR the forces (of attraction) between the particles are overcome more often	accept particles move faster/more rapidly/more quickly allow the energy of the liquid increases accept particles escape more quickly accept molecules/atoms for particles for both M1 and M2 allow bonds for force of attraction	2
		Tota	marks

Question number	Answer	Notes	Marks
3 (a)	$\begin{aligned} & \text { M1 - C } \\ & \text { M2 - (it) has a spot in line with/at the } \\ & \text { same height as (the spot produced by) } \\ & \text { bute/an illegal drug } \end{aligned}$	Accept references to travelling same distance / having same R_{f} value M2 dep on M1	1
(b)	a substance/liquid that dissolves a solute/solid/another substance	Accept it forms a solution with a solute/solid/substance	1
(c)	M1 correctly measured distance for lasix spot correctly measured distance of solvent front M2 - any value in range 0.73-0.77	Lasix spot $62-64 \mathrm{~mm} / 6.2-6.4 \mathrm{~cm}$ Solvent front $84 \mathrm{~mm} / 8.4 \mathrm{~cm}$ Minimum of 2 dp correct answer with no working scores 2 M2 csq on M1	1 1
(d)	the more soluble the substance the further it will travel	Allow distance increases with (increasing) solubility ignore any reference to proportionality	1
Total 6 marks			

Question number	Answer		Notes	Marks
4 (a)	Description of reaction	Metal	3 correct $=2$ marks 1 correct = 1 mark accept symbols	2
	it explodes on contact with water	caesium		
	it fizzes gently	lithium		
	it reacts violently and forms a lilac flame	potassium		
(b) (i)	$\begin{aligned} & \text { M1 - hydrogen } \\ & \text { M2 - } \mathrm{H}_{2} \end{aligned}$		ignore symbol or formula even if incorrect reject H accept $\mathrm{H}_{2}(\mathrm{~g})$ as a product in an equation ignore name even if incorrect accept LiOH as a product in an equation	1
(ii)	M1 - lithium hydroxide M2 - LiOH		ignore formula even if incorrect ignore name even if incorrect	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(iii)	M1 - add (red) litmus M2 - turns blue OR M1 - use a pH meter / measure pH $\mathbf{M 2}-\mathrm{pH}>7$		accept any named indicator accept correct colour for named indicator ignore purple M2 DEP on M1 do not award M1 or M2 if blue litmus is used	1 1

Question number	Answer	Notes	Marks
5 (a) (i)	M1 - E $\mathbf{M 2 ~ - ~ v o l u m e ~ o f ~ c a r b o n ~ d i o x i d e / g a s ~ (g i v e n ~}$ off) is half / is $30 \mathrm{~cm}^{3}\left(\right.$ not $\left.60 \mathrm{~cm}^{3}\right)$	accept volume of carbon dioxide/gas is less accept amount for volume ignore references to rate in (i)	1
(ii)	M1 - C M2 - curve levels off later / curve is less steep	Accept the reaction is slower /carbon dioxide/gas given off more slowly / takes longer for reaction to complete	1

Question number	Answer	Notes	Marks
6 (a)	all of the sodium chloride has reacted / the sodium chloride has been used up	Accept no more sodium chloride left (to react) Accept sodium chloride is the limiting reagent reject all reactants used up Ignore reaction has stopped/is complete	1
(b) (i)		M1 \& M2 - all points correctly plotted deduct one mark for each point incorrectly plotted M3 - two straight lines drawn lines must be drawn with the aid of a ruler first line does not need to go through origin second line must be horizontal M4 - lines intersect M4 dep on M3	2 1 1
(ii) (iii)	circle drawn around point $(2.5,10)$ A (the precipitate was not allowed to settle before its height was measured)		1 1
(iv)	no precipitate is produced when no lead(II) nitrate is added	Accept the height of precipitate is (directly) proportional to the volume of lead(II) nitrate (added) Accept the two variables (plotted) are (directly) proportional (to one another)	1 1

| | | Ignore no reaction / reaction not started
 accept any value between 6.8 and 7.2 |
| :---: | :--- | :--- | :--- |

Question number	Answer	Notes	Marks
7 (a) (i)	(saturated) - all (carbon to carbon) bonds are single no (carbon to carbon) double bonds	accept no (carbon to carbon) multiple bonds ignore any references to hydrogen	1
(ii)	M1 - (compounds/substances/molecules) containing hydrogen and carbon (atoms/elements)	reject atoms/elements/ions/mixture in place of compounds reject compounds/substances/molecules in place of atoms/elements accept other terms with same meaning, e.g. solely, exclusively, just M2 DEP on mention of hydrogen and carbon / C and H and no other element	1

$\begin{array}{c}\text { Question } \\ \text { number }\end{array}$	Answer	Notes	Marks		
7 (c)	$\begin{array}{l}\text { (provides an alternative pathway of) lower } \\ \text { activation energy }\end{array}$	$\begin{array}{l}\text { Accept (molecules adsorb onto catalyst and } \\ \text { covalent) bonds weakened }\end{array}$	1		
(ii)	silica/silicon dioxide/alumina/aluminium oxide	$\begin{array}{l}\text { accept correct formulae } \\ \text { accept aluminosilicate(s) accept zeolite(s) } \\ \text { ignore silica oxide and alumina oxide } \\ \text { If both name and formula given, mark name only } \\ \text { (iii) }\end{array}$	$\mathrm{C}_{2} \mathrm{H}_{4}$		
(iv)	ethene	accept structural or displayed formula		$]$	1
:---:					

Question number	Answer	Notes	Marks
8 (a) (i) (ii) (iii)	M1 \& M2 - any two from: - does not melt/high melting point - does not colour the flame - inert/unreactive / does not burn/react with oxygen/air to remove any substance that may affect the colour difficult to see the colour produced by the substance (under test)	Ignore general physical properties of metals, eg boiling point ignore references to removing impurities Allow result/flame for colour Accept flame not hot enough (to vaporise the sample) Accept the temperature is not high enough (to vaporise the sample) Allow flame is (already) coloured	2 1 1
(b) (i) (ii)	(X) M1 - sodium M2 - chloride (Y) M3 - lithium M4 - sulfate iron(II) $/ \mathrm{Fe}^{2+} / \mathrm{Fe}^{+2} / \mathrm{Fe}^{++}$	Accept symbol in any formula accept Li symbol and SO_{4} in any formula accept strontium for M3 accept ferrous ignore iron ion if both name and formula given both must be correct	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1 1 1

(c)	M1 - add (dilute) acid		1
	M2 - test gas/bubbles/carbon dioxide with limewater	If incorrect gas mentioned, only M1 can be awarded	1
	M3 - limewater turns milky	M3 DEP on mention of gas	1

Question number	Answer	Notes	Marks
9 (a) (i) (ii) (iii)	green to allow (excess/unreacted) gas to escape/to prevent pressure build up Chlorine/the gas is toxic/poisonous	ignore shades accept yellow-green accept to prevent (the risk of) an explosion/breaking the apparatus ignore harmful, dangerous, etc.	1 1 1
(b) (i) (ii)	$\begin{aligned} & \text { M1 - } \\ & \frac{2.8(000)}{56} \text { and } \frac{5.325}{35.5} \\ & \text { OR } \\ & \quad 0.05(00) \text { and } 0.15(00) \\ & \text { M2 - } 1: 3 \\ & \text { M3 }-\mathrm{FeCl}_{3} \end{aligned}$ iron(III) chloride	award 0/3 if division by atomic numbers / wrong way up / multiplication used do not penalise roundings or minor transcription errors (e.g. 5.235 for Cl) If 71 used for Cl_{2}, lose M1 but M2 and M3 can be awarded - consequential answer from this error is $\mathrm{Fe}_{2} \mathrm{Cl}_{3}$ M2 subsumes M1 Accept symbols in any order Award 3 marks for correct final answer with no working accept ferric chloride ignore iron chloride accept iron trichloride	1 1 1 1

| 9 (c) | $\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$ | |
| :--- | :--- | :--- | :--- |
| $\mathbf{M 1}-$ all formulae correct | | |
| $\mathbf{M 2}$ - balanced using correct formulae | | 2 |

Question number	Answer	Notes	Marks
10 (a) (i)	$\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ M1 - all formulae correct and equation balanced M2 - state symbols correct	M2 can be awarded for near misses on formulae, e.g. ZnCl and H accept upper case letters for state symbols	2
(b)	M1 bubbles/fizzing/effervescence M2 zinc/solid gets smaller/disappears	accept gas given off ignore hydrogen given off accept zinc/solid dissolves / (final) solution is colourless reject zinc melts and other Group 1 observations, eg floats / moves across surface Ignore references to heat and temperature change	2

Question number	Answer	Notes	Marks
11 (a) (i) (ii) (iii)	 M1 - a long chain (molecule) M2 - formed when (many) small molecules/monomers join (together) poly(tetrafluoroethene)/poly(tetrafluoroethylene)	ignore bond angles Ignore brackets and n Do not penalise FI accept large molecule / macromolecule Accept react/bond/add/link for join accept names without brackets Ignore minor spelling errors Ignore PTFE accept Teflon	
(b)	M1 (name) - ethene M2 (formula) - $\mathrm{C}_{2} \mathrm{H}_{4}$	accept ethylene reject structural or displayed formula Penalise inappropriate use of upper and lower case letters or numbers No penalty for correct answers on wrong lines	1

| (c) | M1 - (they) do not biodegrade
 M2 - (because) they are inert / do not react /
 are unreactive | accept not broken down by bacteria /
 microbes / decomposers / microorganisms /
 enzymes |
| :---: | :--- | :--- | :--- |
| ignore do not react with any named chemical | | |
| ignore references to bond strengths / bond | | |
| breaking | | |
| Mark independently | | |

Question number	Answer	Notes	Marks
12 (a)	copper	ignore symbol reject copper(II) $/ \operatorname{copper(II)~ions~/~Cu~}$	
(b)	zinc cannot displace itself	Accept zinc cannot react with zinc ions/zinc nitrate Accept the two metals involved have the same reactivity	1
(c)	aluminium zinc M copper M1 - aluminium at top and copper at bottom $\mathbf{M 2 ~ - ~ z i n c ~ a b o v e ~ M ~}$	award $\mathbf{M 2}$ irrespective of where zinc is placed in the list	

(d) (i) (ii)	oxidation and reduction occur OR electron loss and electron gain occur OR oxidation number increase and decrease M1 - $\mathrm{Ag}^{+} /$silver ion(s) M2 - it gains electron/is reduced OR it takes electrons from $\mathrm{Mg} /$ magnesium (atoms) OR its oxidation number decreases OR it causes the oxidation number of Mg to increase	reject references to oxygen Accept electron transfer Ignore species involved M2 DEP on M1 or near miss, e.g. Ag	1

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 13 (a) \& measuring cylinder/measuring jug \& accept burette/pipette \& 1 \\
\hline (b) \& \begin{tabular}{l}
no more bubbles/fizzing/effervescence/gas given off \\
OR \\
solid/zinc carbonate can be seen in the beaker OR \\
the solid/zinc carbonate stops disappearing/dissolving \\
OR \\
a suspension (of zinc carbonate) forms \\
OR \\
the liquid turns cloudy
\end{tabular} \& \begin{tabular}{l}
allow solid remains in the solution \\
ignore the reaction stops
\end{tabular} \& 1 \\
\hline (c) \& filtration \& accept filtering accept centrifuging \& 1 \\
\hline (d) \& \begin{tabular}{l}
M1 - heat/boil to partially evaporate (the water) \\
M2 - leave to crystallise / leave until crystals form \\
M3 - filter (to remove excess liquid) \\
M4 - appropriate method of drying crystals
\end{tabular} \& \begin{tabular}{l}
accept to remove some of the water accept heat to form a saturated/concentrated solution \\
/ heat until crystals form on (cold) glass rod / heat until crystals (just start to) form If evaporated to dryness then award no marks for whole question \\
accept leave to cool \\
accept pour off/decant (excess) liquid \\
e.g. use filter paper/blotting paper/kitchen towel / leave in (warm) oven/drying oven \\
Accept leave to dry \\
Do not accept hot oven/heat with a Bunsen flame
\end{tabular} \& 1

1
1
1

\hline
\end{tabular}

Question number	Answer	Notes	Marks
14 (a) (i) (ii)	M1 - (covalent) bonds have to be broken M2 - large amount of energy required / bonds are strong the (covalent) bonding in silicon dioxide is stronger (than the (ionic) bonding in sodium chloride)	any mention of ions / metallic bonding / molecules / intermolecular forces scores $0 / 2$ Accept large number of bonds to be broken Accept forces (of attraction) between atoms in place of bonds Accept the covalent bonds (in silicon dioxide) are stronger than the ionic bonds (in sodium chloride) Accept more energy is required to break the (covalent) bonds in silicon dioxide (than is required to break the (ionic) bonds in sodium chloride) Accept forces (of attraction) between atoms in place of bonds	1 1 1
(b)	ions flow/move (to the electrodes)	Accept ions are mobile/can move reject electrons	1
(c)	weak forces (of attraction) between molecules / weak intermolecular forces (of attraction) / little energy is required to separate molecules	Accept boiling point is below room temperature reject any mention of covalent bonds broken	1

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Question number \& \multicolumn{5}{|c|}{Answer} \& Notes \& Marks \\
\hline \multirow[t]{4}{*}{15 (a)} \& \& \& \& \& \& \& \multirow[t]{4}{*}{1} \\
\hline \& Titration number \& 1 \& 2 \& 3 \& 4 \& \& \\
\hline \& Volume of \(\mathrm{KMnO}_{4}\) solution added/ \(\mathrm{cm}^{3}\) \& 22.80 \& 22.10 \& 22.50 \& 22.20 \& \& \\
\hline \& Concordant titration results (\(\checkmark\)) \& \& \(\checkmark\) \& \& \(\checkmark\) \& \& \\
\hline (b) \& \(\begin{array}{ll}\text { M1 } \& \frac{22.1(0)+22.2(0)}{2}\end{array}\)
\[
\text { M2 - } 22.15\left(\mathrm{~cm}^{3}\right)
\] \& \& \& \& \& \begin{tabular}{l}
CSQ on boxes ticked in \\
(a) \\
If no results ticked, award M1 only if columns \\
2 and 4 averaged \\
If only one result ticked, no marks can be awarded in (b) \\
CSQ on results averaged, but the results must be taken from the table \\
Answer must be to 2 dp \\
correct answer with no working scores 2
\end{tabular} \& 1

1

\hline (c) \& D (pipette) \& \& \& \& \& \& 1

\hline
\end{tabular}

Question number	Answer	Notes	Marks
15 (d) (i)	$\begin{array}{ll}\text { M1 } & \frac{20(.00) \times 0.02(00)}{1000}\end{array}$	0.4(00) scores 1	1
	M2- $4(.00) \times 10^{-4}(\mathrm{~mol})$		1
(ii)	$5 \times \mathbf{M 2}$ from (i) $/ 4(.00) \times 10^{-4} \times 5 / 2(.00) \times 10^{-3}$		1
(iii)	$10 \times$ answer to (ii) $/ 2(.00) \times 10^{-2}$		1
(iv)	answer to (iii) $\times 152 /\left(2(.00) \times 10^{-2} \times 152\right)=3.04(\mathrm{~g})$		1
(e) (i)	$\begin{aligned} & m\left(\mathrm{H}_{2} \mathrm{O}\right)=(24.2-15.2)=9(.0)(\mathrm{g}) \\ & \text { answer to (i) } \div 18 / n\left(\mathrm{H}_{2} \mathrm{O}\right)=(9.00 \div 18)=0.5(0) \\ & (\mathrm{mol}) \\ & n\left(\mathrm{FeSO}_{4}\right)=(15.2 \div 152)=0.1(00)(\mathrm{mol}) \\ & \mathrm{x}=\text { answer to }(\mathrm{ii}) \div \text { answer to } \text { (iii) } / 5 \end{aligned}$	must be given as a whole number	1
(ii)			1
			1
(iv)			1

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

